Протоколы Internet


Системы шифрования - часть 5


Шифрование может осуществляться по определенным правилам с помощью таблиц шифрования или ключей. При этом могут использоваться самые разные алгоритмы, в том числе, например, перемещение символов текста определенным образом. За свою историю люди придумали достаточно большое число способов шифрования. Новейшие из них базируются на методиках, заимствованных из теории чисел. По этой причине, прежде чем переходить к следующему разделу, введем некоторые определения.

Конгруентность

. a конгруентно b по модулю n (a є nb), если при делении на n a и b, получается идентичный остаток. Так 100 є 1134 (100 и 34 при делении на 11 дают остаток 1) и –6 є 810 (ведь –6 =8(-1)+2). Мы всегда имеем a є nb для некоторого 0 Ј bЈ n-1. Если a єnb и сє d, то справедливы равенства:

a +c є n(b + d) и ac єnbd

Аналогичная процедура для деления не всегда справедлива: 6є 1218 но 3№ 9. Приведенные здесь и далее математические определения и обоснования взяты из: http://lglwww.epfl.ch/~jkienzle/digital/node20.html.

Необходимо также вспомнить о знакомом всем со школьной скамьи понятии наибольшего общего делителя. Для a и b число (a,b) является наибольшим общим делителем, который делит a и b без остатка:

(56,98)=14; (76,190)=38

Теорема 1

. Для любых a,b существуют целые числа x,y, для которых ax+by=(a,b). В данной статье не приводится доказательств представленных утверждений, их следует искать в книгах по дискретной математике.

В этом можно убедиться, решая уравнение 30x+69y=3 путем последовательных упрощающих подстановок (ищется целочисленное решение:

30x+69y=3

30x'+9y=3

[x'=x+2y]

3x'+9y'=3

[y'=y+3x']

3x"+0y'=3

[x"=x'+3y']

Легко видеть, что x"=1, y'=0 является решением окончательного уравнения. Мы можем получить решение исходного уравнения путем обратной подстановки.

x'=x"-3y'=1 y=y'-3x'=-3 x=x'-1y=7

Мы можем решить уравнение вида 30x+69y=15 путем умножения нашего решения: y=-15, x=35. Должно быть ясно, что уравнение не будет иметь целочисленного решения, если 15 заменить на что-то некратное (30,69)=3.




Начало  Назад  Вперед



Книжный магазин