Протоколы Internet


              

Для всякого регулярного случайного процесса


Для всякого регулярного случайного процесса x 2 равенство I(x1,x2)=0 справедливо лишь тогда, когда случайный процесс x 1 не зависит от процесса x2 (это говорит о том, что в некоторых случаях I(x1,x2) № I(x 2,x 1) ).

При дополнительных условиях типа регулярности скорость передачи информации I(x 1,x 2)

совпадает с пределом



где , заключенное в

0< c Ј l 2nf(l ) Ј c < Ґ

Пусть стационарный процесс x = x (t) представляет собой последовательность величин, каждая из которых принимает значения из некоторого алфавита x, состоящего из конечного числа символов x1, x2,…,xn. Предположим, что вероятность появления на фиксированном месте определенного символа xi есть pi, а вероятность появиться за ним символу xj не зависит от предшествующих xi значений и есть pij:



P

{x (t) = xi} = pi, P{x(t+1) = xi xi|x(t) = xi, x(t-1),…, } = pij

Другими словами x = x

(t) - стационарная цепь Маркова с переходными вероятностями {pij} и стационарным распределением {pi}. Тогда скорость передачи информации стационарным процессом x(t) будет

I(x,x) = -

В частности, если x = x(t) – последовательность независимых величин (в случае pij = pj), то



I(x,x) = -



Пусть x1 = x1(t) и x2 = x2(t) – стационарные гауссовы процессы со спектральными плотностями f11(l), f22(l) и взаимной спектральной плотностью f12(l) причем процесс x2 = x2(t) является регулярным. Тогда

I(x1, x2) = -



Рассмотрим следующее условие близости гауссовых стационарных процессов x1(t) и x2(t):

M|x1(t) - x2(t)|2 Јd2

Наименьшая скорость передачи информации

H = infI(x1,x2),

совместимая с указанным условием “d-точности”, выражается следующей формулой:


Содержание  Назад  Вперед





Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий